TRANSMISSION SYSTEM

EARTHQUAKE READINESS

HIGH VOLTAGE SUBSTATIONS

Wave Trap

Dead Tank PBC

RISK REDUCTION SOLUTIONS DETERMINE RISK Identify And Quantify Potential Losses **IDENTIFY STRATEGIES** Business Strategies Response Strategies Design Strategies Response plan and Materials Reduce Reduce **Vulnerability** Hazard Accept Risks Emergency Operation Centers Evaluate and Select Optimal Combination of Strategies

Great Historic Earthquakes in Chile

1575 Valdivia	8.5
1730 Valparaiso	8.7
1751 Concepción	8.5
1835 Concepción	8.5
1868 Arica	9.0
1906 Valparaíso	8.2
1922 Vallenar	8.5
1943 Coquimbo	8.2
1960 Valdivia	9.5
1985 Santiago	8.0
1995 Antofagasta	8.0
2010 Maule	8.8

China 2008, 220 kV Substation

Landslides

Taiwan Earthquake New Zealand, 1968 66 kV

Rock Falls

TSUNAMI VULNERABILITY

JAPAN

R N N E S R F B R M E R E

SYSTEM EARTHQUAKE (Extreme Event) RISK ASSESSMENT

- System Inventory
- Component Fragility
- Scenario Earthquakes
- SERA Results

- Originally developed for Southern California Edison (SCE), 1990
- Used to evaluate the San Francisco BART system

SUBSTATION T-LINE SUBSTATION

SERA MODEL

TRANSFORMER VULNERABILITIES

EARTHQUAKE EXERCISE: M9 CASCADIA SUBDUCTION ZONE

FUNCTIONAL FAILURE

Seismic Mitigation • BUIIDLINGS Structural and Nonstructural

SUBSTATION SEISMIC MITIGATION PROGRAM

SUBSTATION SEISMIC MITIGATION PROGRAM

Rigid Bus Riser

Earthquake Damage

Mitigation: Flexible Bus Riser

Structural Bracing

Disconnect Switch

Flexible Connections

SUBSTATION SEISMIC MITIGATION PROGRAM

FIELD RETRO-FIT INSTALLATION OF A RING SPRING FRICTION DAMPER

Seismic Vulnerability of High Voltage Power Transformers (460kV) and Base Isolation Options

TRANSMISSION TOWER SEISMIC MITIGATION PROGRAM

COLUMBIA RIVER

WILLAMETTE RIVER

IEEE Recommended Practice for Seismic Design of Substations

IEEE Power Engineering Society

Sponsored by the Substations Committee

3 Park Avenue New York, NY 10016-5997, USA

8 May 2006

IEEE Std 693[™]-2005 (Revision of IEEE Std 693-1997)

NEW SEISMICALLY DESIGNED SUBSTATION

Infrastructure Systems

 Contemporary complex infrastructure systems

> Essential for modern society function

Large scale and high exposure systems

 Reached accelerated phase of aging and deterioration

More interdependent for optimized operation

Leonardo Dueñas-Osorio

RESILIENCY

4 R's

Robustness – Inherent strength
Redundancy – Alternate options
Resourcefulness – Mobilize Resources
Rapidity – Recovery Time

The Oregon Resilience Plan

Reducing Risk and Improving Recovery for the Next Cascadia Earthquake and Tsunami

Oregon Resilience Plan

	Desired time to restore component to 80-90% operational - In 50 Years								G
_	Desired time to restore component to 50-60% operational - In 50 Years								Υ
	Desired time to restore component to 20-30% operational - In 50 Years								R
Current state restoration to 90% operational								Today	Х

ELECTRIC									
	ZONE: COAST (Non Tsunami Zone)								
All - see notes below						,			
Transmission						X			
Substation							X		
Distribution					X				
NATURAL GAS									
Transmission					X		-		
Gate Stations					X				
Distribution					X				
LIQUID FUEL									
Transmission							_		
Storage									

THE CENTER FOR RISK-BASED COMMUNITY RESILIENCE PLANNING

A NIST-FUNDED CENTER OF EXCELLENCE

University Partners:

Colorado State University

Cal Poly Pomona
University of Illinois
University of Oklahoma
Oregon State University

Rice University
Univer. of South Alabama
Texas A&M University
Texas A&M Kingsville
University of Washington

Scope:

Identify the key components and attributes within communities that make then resilient to hazards, develop the NIST Community Resilience Modeling Environment (NIST-CORE) to support risk-informed resilience decisions. (Infrastructure independence, response, and recovery)

The End